On Boolean Ideals and Varieties with Application to Algebraic Attacks
نویسندگان
چکیده
Finding the key of symmetric cipher takes computing common zero of polynomials, which de ne ideal and corresponding variety, usually considered over algebraically closed eld. The solution is the point of the variety over prime eld; it is de ned by a sum of the polynomial ideal and the eld ideal that de nes prime eld. Some authors use partitioning of this sum and reducing syzygies of polynomial ideal modulo eld ideal. We generalize this method and consider polynomial ideal as a sum of two ideals, one of them is given by short polynomials, and add this ideal to the eld ideal. Syzygies are reduced modulo this sum of ideals. Accuracy of de nition of the substitution ideal by short polynomials can be increased using a ne equivalence of ideals. This method decreases degree and length of syzygies and reduces complexity of Groebner basis computation.
منابع مشابه
Rough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملLattice of weak hyper K-ideals of a hyper K-algebra
In this note, we study the lattice structure on the class of all weak hyper K-ideals of a hyper K-algebra. We first introduce the notion of (left,right) scalar in a hyper K-algebra which help us to characterize the weak hyper K-ideals generated by a subset. In the sequel, using the notion of a closure operator, we study the lattice of all weak hyper K-ideals of ahyper K-algebra, and we prove a ...
متن کاملVarieties Having Boolean Factor Congruences
Every ring R with identity satisfies the following property: the factor ideals of R (i.e., those ideals I such that I+ J= R and In J= (0) for some ideal J) form a Boolean sublattice of the lattice of all ideals of R. The universal algebraic abstraction of this property is known as Boolean factor congruences (BFC) or as the strict refinement property; more examples of algebras having BFC are lat...
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012